Tag Archives | sgd

Stochastic Gradient Descent (SGD) with Python

In last week’s blog post, we discussed gradient descent, a first-order optimization algorithm that can be used to learn a set of classifier coefficients for parameterized learning. However, the “vanilla” implementation of gradient descent can be prohibitively slow to run on large datasets — in fact, it can even be considered computationally wasteful. Instead, we should apply Stochastic […]

Continue Reading 8